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Abstract

Smoking remains the leading cause of preventable death in the United States. Much of the focus 

on harmful constituents (HPHCs) in tobacco products has been on cigarettes. Little cigars have 

gained popularity over the last decade as tobacco taxes made cigarettes more expensive in the U.S. 

Many little cigar brands are similar in size with cigarettes and may be smoked in a similar manner.

Scant data are available on HPHC levels in little cigars, therefore we developed and applied a new 

analytical method to determine concentrations of ten toxic metals in little cigar tobacco. The 

method utilizes “triple quadrupole” ICP-MS. By optimizing octapole bias, energy discrimination, 

and cell gas flow settings, we were able to accurately quantify a range of elements including those 

for which the cell gas reactions were endothermic. All standard modes (Single Quad No Gas, 

MS/MS NH3/He, and MS/MS O2) were utilized for the quantitation of ten toxic metals in little 

cigar tobacco, including uranium, which was added as an analyte in the new method.

Because of the elimination of interfering ions at “shifted analyte masses,” detection limits were 

lower compared to a previous method. Tobacco selenium concentrations were below the limit of 

detection in the previous method, but the new technology made it possible to report all selenium 

concentrations.

Introduction

Cigarette smoking is estimated to cause more than 480,000 deaths annually, including 

deaths from secondhand smoke (1). Smoking prevalence has fallen in the U.S. since its peak 

in 1963, but has remained at almost 20% of the U.S. population between 2004 and 2010 (2). 

In 2012, adult smoking remained highest among those had completed high school education 

or less or who were below poverty level income (3).
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A recent follow up on the Virginia Youth Tobacco Survey found that approximately the 

same number of adolescents (9.2%) reported smoking Black and Mild® little cigars (which 

are typically smoked as cigarettes) as the number that reported smoking cigarettes (9.2%), 

though only 6.1% reported using cigars as a category of tobacco product (4). This data 

indicated that many of the youth surveyed understood smoking little cigars as equivalent to 

smoking cigarettes, a distinction based on tobacco wrapping for little cigars versus wood 

pulp paper wrapping for cigarettes. This minor difference that determines the product 

category is apparently not a distinguishing factor to many little cigar smokers. The authors 

of the manuscript concluded that little cigar smoking among adolescents had been 

underreported, because they perceived smoking little cigars as equivalent to smoking 

cigarettes (4). The strong similarity between little cigars and cigarettes is consistent with the 

marketed design of little cigars (5). Indeed, 42.4% of smokers surveyed in the 2011 National 

Youth Tobacco Survey responded that they used flavored cigars or flavored cigarettes (6).

An analysis of data from the 2012–2013 National Adult Tobacco Survey found that 

approximately one in 20 U.S. adults smoke cigars. Among adults who smoke cigars, 18.4% 

smoke little filtered cigars. The groups that more often chose to smoke little cigars were age 

50 to 64, women, white non-hispanic, with high school education level or lower, and with 

income in the lowest bracket (7).

The established health risks from tobacco products, the current, new regulatory 

environment, and the wide diversity of commercial tobacco products available in the U.S. 

necessitate the development and continued improvement of robust, high throughput methods 

for tobacco analysis in order to quantitatively determine concentrations of toxic substances, 

particularly metals, found in tobacco products.

A risk assessment approach that identified 5 major classes of toxic constituents of tobacco 

smoke found that toxic metals impart carcinogenic health risk second only to the group of 

small molecules and aldehydes (8). Metals in tobacco smoke are likely candidate agents for 

increased risk of cancer and diseases that are consequences of chronic inflammation and 

sensitization such as COPD and asthma (8,9). Thus, characterization of metals in tobacco 

filler is necessary to fill an outstanding research gap and provide data to help assess potential 

health impact from little cigars.

We have previously reported concentrations of ten toxic and carcinogenic metals in tobacco 

filler from 50 domestic cigarette varieties (10). Mainstream smoke toxic metal deliveries in 

a subset of domestic cigarette brands (11,12) and from counterfeit cigarettes seized in the 

U.S. have been previously reported by our laboratory (13). Multivariate statistical analysis 

of the tobacco and smoke data correlated cigarette design and physical parameters with 

delivery of arsenic, cadmium, and lead from the filler tobacco into mainstream smoke (12). 

Our multivariate statistical analyses showed that the transfer of arsenic (p < 0.0001), 

cadmium (p < 0.0001), and lead (p = 0.0011 [ISO regimen], p= 0.0002 Intense regimen]) 

into mainstream cigarette smoke was strongly positively correlated with tobacco mass (12) 

in both ISO (14) and Health Canada Intense (15) smoking regimens. Though measurements 

of toxic metal concentrations in tobacco smoke are a major goal, data suggest smoke 

concentrations are highly dependent on the tobacco lamina metal concentrations and the 
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total tobacco mass in the cigarette (12,16). Therefore determination of the unsmoked 

tobacco metals content provides important information to be used in conjunction with metal 

levels in smoke. The harmful and potentially harmful constituents (HPHCs) of little cigar 

products have been understudied, therefore we focused on inorganic HPHCs in the tobacco 

of select brands of little cigars.

We report using a new approach in “triple quad” ICP-MS technology for quantitative 

determination of toxic metals in little cigar tobacco. When used in MS/MS or “Triple Quad” 

mode, the instrument employs mass exclusion with single mass unit bandpass resolution in 

the first quadrupole. The exclusion of all masses except the mass of the analyte isotope is 

followed by reaction of the analyte with a gas in the octapole cell. When oxygen is used as 

the reactive gas, a 16 mass unit shift of the analyte mass results from formation of the ion 

oxide. MS/MS mode may also be used with ammonia in the octapole cell (10% ammonia, 

90% helium), which results in mass unit shifts of multiples of 17 to form oligoammino 

cluster ion complexes. The mass shifts result in a more optimal quantitation of the analyte at 

masses where discrimination against interfering ions in the first quadrupole has occurred. 

Utilization of this analyte “mass shift” uniquely eliminates potential interfering ions at the 

new mass, allowing improved analyte quantification. Background at the analyzed mass as a 

consequence is very low compared to analysis with a single quadrupole instrument. We are 

not aware of any previous applications in which the “Triple Quad” technology in two 

distinct gas modes has been employed along with the single quad mode for the analysis of 

ten toxic metal analytes in tobacco.

Experimental

Little cigar samples

Little cigar samples were purchased domestically in 2014. The samples were selected 

according to a convenience sampling plan based on brand availability, assigned unique 

identification numbers, and logged into a database. Samples were stored in their original 

packaging until needed. Only authorized personnel had access to the samples.

Little cigar tobacco sample and blank preparation for analysis

Tobacco filler samples from little cigars were dried in perfluoroalkoxy (PFA) vials for a 

minimum of 1 hour at 90°C. Dried tobacco was rendered more homogeneous by grinding for 

20 seconds in a Smart Grind coffee grinder (Black and Decker, Middleton, WI, USA). 

(Thermofisher, Pittsburgh, PA, USA). Samples were tightly sealed until weighed for 

analysis.

Weighed sample portions (0.100 to 0.150 g dried tobacco) were prepared for analysis by 

microwave digestion in Tracecleaned 75 mL TFM vessels with a Milestone Ethos 

microwave system with Pro-24 rotor (Milestone, Shelton, CT, USA). Digestion was 

accomplished with double distilled nitric and hydrofluoric acids (9.0 mL and 0.5 mL, 

respectively, GFS, Powell, OH, USA), and 0.5 mL Tamapure AA-10 35% hydrogen 

peroxide (Moses Lake Industries, Moses Lake, WA, USA) in each vessel. Procedural blanks 

were prepared by addition of all reagents to a vessel without tobacco before heating in the 

microwave system. The microwave heating profile was programmed to start at ambient 
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temperature and increase to 190°C in 10 minutes, followed by a 15 minute digestion at 

190°C. Digested samples were diluted with approximately 40 mL ultrapure water and 

transferred into acid-cleaned 100.0 mL class A polymethylpentene volumetric flasks. 

Additional ultrapure water rinses of the digestion vessel were used to quantitatively transfer 

the digested material and bring the volume to the 100.0 mL mark in the volumetric flask. 

Procedural blanks were transferred to volumetric flasks and diluted in the same manner as 

tobacco samples. The microwave system and the digestion method represent modifications 

to our previously published analytical methods (10,17).

ICP-MS Quantification

Five calibration standard solutions were prepared by dilution of High Purity Standards 

(HPS, Charleston, SC, USA) and National Institute for Standards and Technology lead 

standard SRM 981 (NIST, Gaithersburg, MD, USA). The calibration standard solutions 

were prepared in 9% v/v nitric acid and 0.5% hydrofluoric acid to match the diluted acid 

digest concentrations. The concentration ranges for the respective standards were 0.005 to 

0.250 μg/L (beryllium), 0.0100 to 0.500 μg/L (uranium), 0.0500 to 2.50 μg/L (arsenic and 

selenium), 0.100 to 5.00 μg/L (cobalt), 0.200 to 10.00 μg/L (chromium and lead), 0.500 to 

25.00 μg/L nickel and cadmium), and 20.0 to 1000.0 μg/L (manganese). Calibration ranges 

for all metals spanned the observed levels in domestic cigarette filler tobacco (10). Internal 

standard solutions were prepared by dilution of HPS rhodium, tellurium, iridium, and 

thulium standards. The internal standards (20.0 μg/L Rh and Te, 2.0 μg/L Tm and Ir) were 

prepared in 1% v/v nitric acid and 2% v/v 2-propanol (semiconductor grade, Sigma-Aldrich, 

St. Louis, MO, USA).

Instrumentation included an SC-DX FAST autosampler (Elemental Scientific, Omaha, NE, 

USA) for high sample throughput and elimination of carryover, and an Agilent 8800 “Triple 

Quad” ICP-MS (Tokyo, Japan). The introduction system was the standard Agilent Peltier-

cooled PFA spray chamber and nebulizer, sapphire injector, used with Pt-tipped sampler and 

Pt-tipped nickel skimmer cone (Spectron, Ventura, CA, USA). The internal standard and the 

sample solutions from the FAST loop were introduced simultaneously via the peristaltic 

pump at 0.45 rps with 0.44 mm i.d. PVC pump tubing from each channel teed together for a 

further 1+1 dilution of samples prior to introduction. Analyses were optimized at 1550 W 

forward power and 0.90 L/min carrier gas flow with no dilution or makeup gas. Signal was 

maximized while maintaining 0.9 to 1.1% CeO/Ce during tuning. Octapole bias was 

optimized at −7.0 V with 6.0 V Energy Discrimination in “Single Quad” (no cell gas) mode. 

Octapole bias was optimized at −18.0 V for optimum cell gas reactions and ion transmission 

with −8.0 V Energy Discrimination in MS/MS mode. Sampling depth and lens parameters 

were optimized for highest signal and optimum peak shape while maintaining low oxides. 

Details regarding instrument mode, cell gas, and assignment of internal standards are 

included in Table 1.

In MS/MS Ammonia mode, 10% NH3 / 90% He was introduced into the octapole cell at 6 

mL/min. In MS/MS Oxygen mode, O2 was introduced into the octapole cell at 0.6 mL/min.
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Quality control and validation procedures

Reference tobacco 1S3 (North Carolina State University, Raleigh, NC, USA) and Certified 

Reference Material (CRM) CTA-OTL-1 (Instytucie Chemii i Techniki Jądrowej, Warszawa, 

Poland) were used as quality control materials. Quality control (QC) samples were prepared 

for the beginning (post-calibration) and end of each analytical run. The analytical QC 

samples were evaluated using a modified Westgard evaluation approach (18) with SAS 

software (Cary, NC, USA). When a QC analyte was determined to be out of control 

according to the modified Westgard criteria, results for the failed analyte in the respective 

batch were not used and analyses were repeated. Additional CRMs, INCT-OBTL-5, INCT-

PVTL-6 (Instytucie Chemii i Techniki Jądrowej, Warszawa, Poland), and SRMs 1570a 

(Spinach Leaves), and 1573a (Tomato Leaves) (NIST, Gaithersburg, MD, USA) were 

analyzed to establish validation of accuracy.

Lowest reportable levels

The Procedural Detection Limits (LODs) were statistically adjusted for potential false 

positive and false negative overlap and determined using the following equation (19).

LOD = [Meanprocedural blank +1.645*(Sprocedural blank + B)] / (1−1.645*A) 

Meanprocedural blank and Sprocedural blank were determined as the mean and standard deviation 

from analyses of 20 procedural digest blanks. Factors A (slope) and B (intercept) were 

determined according to Taylor (20), by plotting standard deviations for the procedural 

blank, and digests of 1S3, CTA-OTL-1, INCT-PVTL-6, NIST SRM 1570a (Spinach 

Leaves), and NIST SRM 1573a (Tomato Leaves) versus their mean concentrations over 20 

analytical runs.

The Lowest Reportable Concentration Level (LRL) was chosen from the higher of the 

adjusted LOD, or the concentration of the lowest calibration standard expressed in terms of 

μg/g, whichever was higher.

Data comparisons with cigarette tobacco

Statistical comparisons of toxic metal concentrations between cigarette and little cigar 

tobacco were performed using t test (Excel®, Microsoft, Redmond, WA, USA).

Results and discussion

High throughput sample preparations

The Milestone digestion system is not sequential as was the system that we have previously 

used (10). This system was chosen because it has a 24 position rotor for TFM vessels, 

enabling digestion of 24 samples per digest rather than 11 samples with a previous system 

(17); and because this system is more compatible with hydrofluoric acid. We were 

concerned about pouring sample digests containing HF over the quartz lip of the digestion 

vessel used in the sequential system during transfers to the volumetric flasks. We had 

experimented with adding HF post-digest with good results for most analytes; and the 

addition of HF either pre-digest or post-digest was effective for dissolution of silicates. 

However, when yields were verified by isotope dilution, we noticed low reference material 
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yields particularly for uranium and chromium unless HF was added pre-digest rather than 

post-digest. When we performed digestions that included HF, no silicate precipitates were 

observed in diluted samples; the samples were colorless, indicating complete digestion; and 

chromium and uranium yields were quantitative. The SC-DX FAST rinse-out autosampler 

only required 30 seconds processing time between samples as compared with approximately 

90 seconds for the Agilent ISIS system (12). The use of a larger capacity microwave rotor 

and replacement of the autosampler system improved our throughput compared to 

previously published methods (10,17).

Cell gas optimizations

Since there were negligible interferences for 9Be, Pb isotopes, and 238U, these were 

analyzed in “Single Quad” (no cell gas) mode, in which quad 1 is used only as an ion 

focusing guide. This mode may impart greater sensitivity for isotopes that do not have 

significant interferences; and it is essential for 9Be+ because of the significant loss of kinetic 

energy and increased scattering losses by low mass ions via collisions with added gases. Our 

initial investigations into whether to use oxygen for the cell gas for other analytes were in 

line with gas phase reaction enthalpies for the respective analytes (21). 111Cd was analyzed 

in oxygen mode without mass shift. Reaction of 111Cd+ to form 111CdO+ was negligible, 

while the native 95MoO+ interference quantitatively reacted with O2 to form 95MoO2+ at 

oxygen flow rates ≥ 0.5 mL/min. 75As+ also reacted quantitatively with O2 at flow rates ≥ 

0.5 mL/min. Though the reactions to form 55MnO+, 60NiO+, and 80SeO+ were endothermic 

and not quantitative, these elements reacted sufficiently for optimum analysis in oxygen 

mode. Reactions went further to completion at higher O2 flow rates, though total metal 

oxide ion transmission declined, possibly as a consequence of loss kinetic energy or ion 

scattering due to increased the numbers of collisions with the cell gas at higher flow rates. 

The optimum 0.6 mL/min O2 flow rate was derived as a compromise between higher oxide 

conversions and suppressed ion counts at higher flow rates.

At 90% He/10% NH3 flow rates of 5 to 7 mL/min, 52Cr+ and 59Co+ reacted with NH3 to 

form predominantly the diammine cluster ion complexes. The 103Rh internal standard 

formed a mix of polyammine cluster ions dependent on the He/NH3 flow rates. At the 0.6 

mL/min flow rate, the tetrammine complex was predominant. Cr+ formed approximately 

37% diammine complex at 6 mL/min He/NH3 versus 0.8% obtained with lower gas flow 

and less negative octapole bias settings.21 Co+ formed approximately 51% diammine 

complex at 6 mL/min He/NH3 versus 0.8% obtained under less optimum conditions.22 Much 

of the remaining Co+ formed the triammine complex. Ni+ formed predominantly the 

triammine complex under these conditions, but better sensitivity was obtained when it was 

mass shifted in oxygen mode. Rh+ formed predominantly the tetrammine complex at 6 

mL/min He/NH3. A flow rate of 6 mL/min He/NH3 resulted as a compromise between 

higher cluster ion complex formation and suppressed ion counts at higher flow rates. 

Formation of mono-, and tetraammine complex ions was less than 4% for Cr+ and Co+ 

utilizing the gas flow rates, octapole bias, and KED voltage settings described above.

Comparison of LODs utilizing the MS/MS mode technology with LODs for analytes 

common to former methods (10,17, Table 2) shows that five of six LODs, though more 
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rigorously calculated in the present work, were lower for analytes for which the mass 

analyzed had been shifted from the analyte isotopic mass 16 units by addition of O from O2 

(As, Mn, Se; with Ni being the only exception) or 34 units by addition of 2NH3 (Co, Cr). 

This results in part from elimination of interferences in the first quadrupole at the cluster ion 

mass. The LOD was also lower for 111Cd, for which the minor interference from 95Mo16O+ 

was shifted to mass 127 (95Mo16O2+). A striking benefit of this technology is that all 

tobacco selenium concentrations were above the LRL in this report, whereas all were <LOD 

previously (10).

Accuracy

The method accuracy was assessed by comparison of our new method’s results with SRM 

and characterized CRM results (Table 3). Comparison of our results with certified, 

reference, and information values for NIST SRMs 1570a and 1573a (Spinach and Tomato 

Leaves, respectively) demonstrated good accuracy even when the concentration target 

ranges were close to or below the method LRLs, such as was the case for As and Pb 

(1570a), and Se (1573a). The only exception was a selenium result that was significantly 

below one (CTA-OTL1) of the five certified materials (good agreement for SE was observed 

for the other 4 reference materials; the reason for the discrepancy with Se for CTA-OTL1 is 

unknown). Comparison of our results with other SRM results, CRM results, and with our 

own previously published results (10) obtained with different instrumentation were also very 

favorable (Table 3).

Analysis of results

The primary goals of this work were to validate a new multielement method for analysis of 

toxic metals in tobacco based on “triple quadrupole” ICP-MS technology, and to apply the 

method to analyses for an overview of the concentration levels for select toxic and 

carcinogenic metals in tobacco from little cigars. Because cigar tobacco is an agriculturally 

based product, and growing locations and conditions can influence metals uptake (23), the 

levels reported here relate to the little cigars analyzed in this study (Table 4).

The importance of monitoring the concentrations of various toxicants present in tobacco 

becomes increasingly important for multiple applications: counterfeit detection, assessment 

of health risks, or for regulatory efforts related to tobacco products. Because information is 

lacking on metals in little cigar products, accurate data is critical for educating the public on 

the hazards of tobacco use and for informing potential public health or regulatory decisions 

related to reducing or eliminating exposure risks to toxicants. For this study, we 

quantitatively analyzed 17 different little cigar brands purchased in 2014, using a novel 

“triple quadrupole” ICP-MS technology. All measurements were made in a strict QA/QC 

approach and the reported levels are an average obtained from pentuplicate (n=5) individual 

measurements of select metals (Table 4).

The mean concentration ranges for beryllium, chromium, manganese, nickel, arsenic, 

cadmium, and lead in little cigar tobacco were significantly wider than the ranges reported 

previously in cigarette tobacco. Uranium concentrations in tobacco were not previously 

reported. Cobalt was the only analyte with the mean concentration range in little cigar 
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tobacco slightly narrower than in cigarette tobacco (10). Despite wider concentration ranges, 

beryllium, chromium, manganese, cobalt, arsenic, selenium, cadmium, and lead 

concentrations in tobacco from little cigars were not significantly different from 

concentrations previously determined in cigarette tobacco (10) (p>0.05). Nickel 

concentrations were significantly different from nickel concentrations in cigarette tobacco (p 

< 0.01). The mean nickel concentration in little cigar tobacco (2.56 μg/g) was lower than the 

mean nickel concentration in cigarette tobacco (3.23 μg/g) on a per gram basis.

Though the differences between overall mean toxicant concentrations in little cigar and 

cigarette filler tobacco, with the exception of nickel, were not significantly different, mean 

values for some brands were outside the corresponding ranges reported for cigarette filler 

tobacco (10). Mean nickel concentrations in tobacco from Cheyenne, and mean chromium, 

manganese, and nickel concentrations in tobacco from Hav-A-Tampa little cigars, for 

example, were above the respective ranges previously reported in cigarette filler tobacco.10 

Tobacco from several little cigars were lower in mean arsenic concentrations than reported 

in cigarette filler, whereas tobacco from Cheyenne little cigars had higher mean arsenic 

concentration than reported in cigarette filler tobacco (10). The Smokers Best and Santa Fe 

little cigar tobacco cadmium concentrations were lower than reported in cigarette tobacco 

filler, whereas the cadmium concentrations in tobacco from Al Capone, Captain Black, and 

Winchester little cigars were at or near the highest mean cadmium concentrations reported in 

cigarette filler tobacco (10). Tobacco from Remington and Winchester little cigars had lower 

mean lead concentrations than the range of mean concentrations reported for cigarette 

tobacco filler, whereas Swisher Sweets had the highest mean concentrations of lead and 

beryllium than in tobacco from other little cigars reported here, as well as from tobacco from 

50 cigarettes previously reported (10). Thus, in general, the levels of toxic metals in little 

cigar tobacco span the ranges of mean concentrations previously determined in cigarette 

filler tobacco. Uranium concentrations in tobacco were not previously reported; and 

selenium was below previously reported limits of detection. Though selenium is a 

respiratory irritant, it is not known whether it contributes to tobacco product toxicity at the 

concentrations reported here. However both metals merit monitoring as selenium 

concentrations are required to be reported in tobacco products by some jurisdictions 

including the Canada Department of Justice Tobacco Reporting Regulations (24); and both 

uranium and selenium are in the U.S. Food and Drug Administration list of Harmful and 

Potentially Harmful Constituents (25).

Conclusions

The method for analysis of toxic metals in tobacco reported here was developed utilizing 

new “triple quadrupole” ICP-MS technology. This is the first application of this technology 

to the analysis of 10 toxic metals in tobacco or similar matrices in three instrument modes, 

two of which utilize the instrument’s mass shift capabilities to avoid mass isobaric 

interferences. The method has been operated within an established QA/QC environment; 

and has been validated using tobacco reference materials and standard reference materials in 

related matrices.
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The method was applied to the analysis of ten toxic metals in the tobacco filler of little 

cigars. Though the number of samples was limited, there were no significant differences in 

concentrations of toxic metals in tobacco from little cigars compared with concentrations in 

tobacco from cigarettes with the exception of nickel. We conclude that the mass shift 

approach offered by “triple quad” ICP-MS is highly effective at improving routine 

quantification of metals in tobacco by eliminating common interferences for the selected 

analytes.

Acknowledgments

This study was funded by an interagency agreement by the U.S. Food and Drug Administration Center for Tobacco 
Products.

References

1. U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years 
of Progress: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human 
Services, Centers for Disease Control and Prevention, National Center for Chronic Disease 
Prevention and Health Promotion, Office on Smoking and Health; 2014. p. 2http://
www.surgeongeneral.gov/library/reports/50-years-of-progress/exec-summary.pdf

2. CDC. Current cigarette smoking prevalence among working adults - United States, 2004–2010. 
MMWR. 2011; 60(38):1305–1309. [PubMed: 21956406] 

3. CDC. Current cigarette smoking among adults – United States, 2005–2012. MMWR. 2014; 63:20–
34. [PubMed: 25208254] 

4. Nasim A, Blank MD, Berry BM, Eissenberg T. Cigar use misreporting among youth: data from the 
2009 Youth Tobacco Survey. Prev Chronic Dis. 2012; 9:110084.10.5888/pcd9.110084

5. Delnevo CD, Hrywna M. “A whole ‘nother smoke” or a cigarette in disguise: how RJ Reynolds 
reframed the image of little cigars. Am J Public Health. 2007; 97:1368–1375. [PubMed: 17600253] 

6. King BA, Tynan MA, Dube SR, Arrazola R. Flavored-little-cigar and flavored-cigarette use among 
U.S. middle and high school students. J Adolesc Health. 2014; 54:40–46. [PubMed: 24161587] 

7. Corey CG, King BA, Coleman BN, Delnevo CD, Husten CG, Ambrose BK, Apelberg BJ. Little 
filtered cigars, cigarillo, and premium cigar smoking among adults – United States, 2012–2013. 
MMWR. 2014; 63:650–654. [PubMed: 25078654] 

8. Fowles J, Dybing E. Application of toxicological risk assessment principles to the chemical 
constituents of cigarette smoke. Tob Control. 2003; 12:424–430. [PubMed: 14660781] 

9. Pappas RS. Toxic elements in tobacco and in cigarette smoke: inflammation and sensitization. 
Metallomics. 2011; 3:1181–1198. [PubMed: 21799956] 

10. Fresquez MR, Pappas RS, Watson CH. Establishment of Toxic Metal Reference Range in Tobacco 
from U.S. Cigarettes. J Anal Toxicol. 2013; 37:298–304. [PubMed: 23548667] 

11. Pappas RS, Polzin GM, Zhang L, Watson CH, Paschal DC, Ashley DL. Cadmium, lead, and 
thallium in mainstream tobacco smoke particulate. Food Chem Toxicol. 2006; 44:714–723. 
[PubMed: 16309811] 

12. Pappas RS, Fresquez MR, Martone N, Watson CH. Toxic Metal Concentrations in Mainstream 
Smoke from Cigarettes Available in the U.S. J Anal Toxicol. 2014; 38:204–211. [PubMed: 
24535337] 

13. Pappas RS, Polzin GM, Watson CH, Ashley DL. Cadmium, lead, and thallium in smoke particulate 
from counterfeit cigarettes compared to authentic U.S. brands. Food Chem Toxicol. 2007; 45:202–
209. [PubMed: 17011104] 

14. International Organization for Standardization. Routine analytical cigarette-smoking machine — 
Definitions and standard conditions. ISO 3308, 2000;1–23.

15. Hammond, D.; O’Connor, RJ. Tob Control. Vol. 17. International Agency for Research on Cancer; 
2008. Constituents in tobacco and smoke emissions from Canadian cigarettes; p. i24-i31.

Pappas et al. Page 9

J Anal Toxicol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.surgeongeneral.gov/library/reports/50-years-of-progress/exec-summary.pdf
http://www.surgeongeneral.gov/library/reports/50-years-of-progress/exec-summary.pdf


16. Bache CA, Lisk DJ, Doss GJ, Hoffmann D, Adams JD. Cadmium and nickel in mainstream 
particulates of cigarettes containing tobacco grown on a low cadmium soil-sludge mixture. J 
Toxicol Reprod Health. 1985; 16:547–552.

17. Pappas RS, Stanfill SB, Watson CH, Ashley DL. Analysis of toxic metals in commercial moist 
snuff and Alaska iqmik. J Anal Toxicol. 2008; 32:281–91. [PubMed: 18430295] 

18. Caudill SP, Schleicher RL, Pirkle JL. Multi-rule quality control for the age-related eye disease 
study. Stat Med. 2008; 27:4094–4106. [PubMed: 18344178] 

19. National Committee for Clinical Laboratory Standards (NCCLS). Protocols for Determination of 
Limits of Detection and Limits of Quantitation. 2004; 24(34):9–35.

20. Taylor, JK. Quality assurance of chemical measurements. 1. Boca Raton (FL): CRC Press; 1987. p. 
79-81.p. 194

21. Agilent Technologies. Agilent 8800 triple quadrupole ICP-MS: Understanding oxygen reaction 
mode in ICP-MS/MS. 2012. http://www.chem.agilent.com/Library/technicaloverviews/Public/
5991-1708EN_TechOverview_ICP-MS_8800_ORS_mode.pdf Last viewed 30 September, 2014

22. Agilent Technologies. Reaction data for 70 elements using O2, NH3 and H2 gases with the Agilent 
8800 triple quadrupole ICP-MS. http://www.chem.agilent.com/Library/technicaloverviews/Public/
5991-4585EN_TechNote8800_ICP-QQQ_reactiondata.pdf Last viewed 30 September, 2014

23. Adamu CA, Bell PF, Mulchi CL, Chaney RL. Residual metal levels in soils and leaf accumulations 
in tobacco a decade following farmland application of municipal sludge. Environ Pollut. 1989; 
56:113–126. [PubMed: 15092482] 

24. Government of Canada, Department of Justice. Tobacco Reporting Regulations. 2000. p. 15SOR/
2000-273http://laws-lois.justice.gc.ca/PDF/SOR-2000-273.pdf Last viewed 30 September, 2014

25. U.S. Food and Drug Administration, Center for Tobacco Products. Harmful and Potentially 
Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List. http://
www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297786.htm Last 
viewed September, 2014

Pappas et al. Page 10

J Anal Toxicol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.chem.agilent.com/Library/technicaloverviews/Public/5991-1708EN_TechOverview_ICP-MS_8800_ORS_mode.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/5991-1708EN_TechOverview_ICP-MS_8800_ORS_mode.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/5991-4585EN_TechNote8800_ICP-QQQ_reactiondata.pdf
http://www.chem.agilent.com/Library/technicaloverviews/Public/5991-4585EN_TechNote8800_ICP-QQQ_reactiondata.pdf
http://laws-lois.justice.gc.ca/PDF/SOR-2000-273.pdf
http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297786.htm
http://www.fda.gov/TobaccoProducts/GuidanceComplianceRegulatoryInformation/ucm297786.htm


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pappas et al. Page 11

T
ab

le
 1

In
st

ru
m

en
t m

od
es

 a
nd

 in
te

rn
al

 s
ta

nd
ar

d 
as

si
gn

m
en

ts

E
le

m
en

t,
 I

so
to

pe
In

st
ru

m
en

t 
M

od
e

C
el

l G
as

Q
ua

nt
it

at
ed

 I
on

Q
ua

nt
it

at
ed

 M
as

s
In

te
rn

al
 S

ta
nd

ar
d

9 B
e

Si
ng

le
 Q

ua
d

N
on

e
9 B

e+
9

19
3 I

r+

20
4+

20
6+

20
7+

20
8 P

b
Si

ng
le

 Q
ua

d
N

on
e

20
4,

 2
06

, 2
07

, 2
08

Pb
+

20
4 

+
 2

06
 +

 2
07

 +
 2

08
19

3 I
r+

23
8 U

Si
ng

le
 Q

ua
d

N
on

e
23

8 U
+

23
8

16
9 T

m
+

52
C

r
M

S/
M

S
N

H
3

52
C

r(
N

H
3)

2+
86

10
3 R

h(
N

H
3)

4+

59
C

o
M

S/
M

S
N

H
3

59
C

o(
N

H
3)

2+
93

10
3 R

h(
N

H
3)

4+

55
M

n
M

S/
M

S
O

2
55

M
nO

+
71

10
3 R

hO
+

60
N

i
M

S/
M

S
O

2
60

N
iO

+
76

10
3 R

hO
+

75
A

s
M

S/
M

S
O

2
75

A
sO

+
91

12
5 T

eO
+

80
Se

M
S/

M
S

O
2

80
Se

O
+

96
12

5 T
eO

+

11
1 C

d
M

S/
M

S
O

2
11

1 C
d+

11
1

19
3 I

r+

J Anal Toxicol. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pappas et al. Page 12

Table 2

Method LODs and LRLs

Analyte Previously Reported LOD10 (μg/g tobacco) Present Method LOD (μg/g tobacco) Present Method LRL (μg/g tobacco)

As 0.082 0.024 0.050*

Be 0.0028 0.0030 0.0050*

Cd 0.23 0.016 0.50*

Co 0.05 0.018 0.100*

Cr 0.16 0.088 0.20*

Mn 13 2.85 20.0*

Ni 0.14 0.217 0.50*

Pb 0.16 0.012 0.20*

Se 0.69 0.019 0.050*

U ND 0.0022 0.010*

*
The LRLs for these analytes are significantly higher than the LODs, because the lowest standard concentrations were higher and were used as the 

LRLs.

ND = Not Determined
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